
HBSound Programmers Document

© D. Collins 2023 / Z80Dad

This document describes the specific locations of the address space for the flags, control and data io
for the HBSound DAC based sound card for the HB6809. This is intended to be rudimentary and
non-specific as the interface can be installed in any one of the 4 slots on the computer.

Reading the flags latch:

The flags latch is located on the base address for the slot, so for instance if the card is loaded into
slot 0x9000 (the space the demo code expects); when you read this address space it should return a
2 bit value:

- 01 – register is empty
- 00 – register is emptying with data loaded
- 10 – register is full (decimal / HEX value is 2)

This value is latched on the rising edge of the system clock and represents the state of the clock at
that moment. Since the addressing is only partially decoded for the interface; you can technically
read from any address in the full range and it will return the value of the flags inside the interface.

Setting the control register / Understanding clock generation:

The DAC gets its sample clock on the falling edge of the system clock when the 8 bit counter hits
specific addresses which output a zero on the LSB of the ROMS Q outputs. This signal also resets
the counter latches on the rising edge of the next clock cycle. The resulting low value from the
EEPROM is OR’d with the system clock so that the data is only shifted out on the falling edge of
the clock. This prevents the flags register for HBSound from updating when the flags are in a
unknown state.

This clock can be set by referencing the following (assuming a 1843200 Hz System clock):

Sample Rt Dec Count HEX Count BIN Count OPCODE HEX Address For Bit
32000 56.6 38 0011 1000 00 38
16000 114.2 72 0111 0010 01 172
8000 229.4 E5 1110 0101 10 2E5
7200 255 FF 1111 1111 11 3FF

The resulting OPCODE must be set in the control register on the device to change the clock
frequency. This can be accomplished by writing a value to the base address of the device + 1. So in
our example program this address is 0x9001. Furthermore you can control the DAC clock output
by setting a ‘1’ in the 3rd least significant bit.

 For instance setting the clock to the lowest speed, and halting the clock would be done by sending a
111 to the interface (DEC 7), sending 011 (DEC 3) would start the clock again.

Sending sample data to the interface:

Sample data can be sent to the interface by writing a byte to the base address. The control logic and
the flexible register will maintain that data in a frame of 16 bytes. You can determine the frame is
full using a “write and check” technique. This is described in the example program with the
following C subroutine:

/* Fill up the buffer till flags indicate it's full.
 *flags & *sample are pointers set by #DEFINE statements
 The pointer data tells the compiler where the flags and
 sample data should go in memory. */

void fillBuffer (unsigned char maxFrequencyCount) {
 while (*flags != 2) { // while not full
 if (maxFrequencyCount == 0) { // handles control code
 frequencyState = 0;
 goto CNTCODE;
 }

 frequencyCount++;

/* switches between high and low when 50% of the period is
 reached. */

 if (frequencyCount == maxFrequencyCount) {
 frequencyState = !frequencyState;
 frequencyCount = 0;
 }
 CNTCODE:
 *sample = frequencyState;
 }
}

The above example describes a square wave generation technique but the data being sent could be
any value that the DAC can understand. Unlike the flags latch, the logic controlling the shift in
signal for the FIFO requires that the data be written to the base address of the device, as base
address+1 is the control latch and the value of the LSB on the address bus is used to determine
where the data is going.

Signals other than address / data bus and unselected persistence:

There are three signals on the interface which have persistence inside the device while it is not
selected. These are the E clock, the system reset and the R//W line. The remaining signals are in tri-
state when the device is not selected due to a pair of bus transceivers which tie the device to the bus.
The R//W line selects the direction of the bus transceivers, but is also buffered for use on the inside
of the device when selected. The E system clock is used to increment the 8 bit counter for the clock
generation, and in the clock synchronization circuit which is used to generate the shift out signal for
the FIFO. The reset line resets all the internal registers and is inverted to create a active high reset
line for the FIFO.

